En Sıcak Konular

Kuantum Biyolojide Devrim: İlk Kez Canlı Bir Organizma (Bir Tardigrad), Elektronik Bir Devre İçinde Kuantum Dolanık Hâle Getiri

22 Aralık 2021 23:04 tsi
Kuantum Biyolojide Devrim: İlk Kez Canlı Bir Organizma (Bir Tardigrad), Elektronik Bir Devre İçinde Kuantum Dolanık Hâle Getiri 1933'te verdiği meşhur Işık ve Yaşam derslerinde Niels Bohr'un kullandığı bir analoji, fizikçilerin atomu karakterize etme çabasıyla biyologların hücreyi karakterize etme çabasını benzeştirmekteydi.

Kuantum Biyolojide Devrim: İlk Kez Canlı Bir Organizma (Bir Tardigrad), Elektronik Bir Devre İçinde Kuantum Dolanık Hâle Getirildi!

 

1933'te verdiği meşhur Işık ve Yaşam derslerinde Niels Bohr'un kullandığı bir analoji, fizikçilerin atomu karakterize etme çabasıyla biyologların hücreyi karakterize etme çabasını benzeştirmekteydi. Canlı hücreler de cansızlar gibi sıradan maddeden yapılmıştır ve dolayısıyla eksiksiz bir kimyasal analiz yapılabilir. Tek sorun, canlılıkta bu madde, oldukça karmaşık ve çetrefilli bir şekilde dizilmiştir. Bohr'a göre bir hücrenin kimyasını çalışmak için, o organizmanın parçalanması ve moleküllerine ayrıştırılması gerekmekteydi; ancak canlının biyolojisini çalışmak için, kimyanın görünmez olduğu çok daha üst bir seviyede çalışmak gerekmekteydi. Bu nedenle Bohr, bir organizmanın kimyasal nitelikleri ile biyolojik organizma hiyerarşisinin eş zamanlı çalışmanın imkânsız olduğunu düşündü.

1940'lardan günümüze yapılan biyolojik ve biyokimyasal atılımlar sayesinde Bohr'un tamamen hatalı olduğunu biliyoruz; ancak geçtiğimiz günlerde Singapur'daki Nanyang Teknoloji Üniversitesi'ndeki bir grup araştırmacı, modern biyoloji, kimya ve fiziğin ötesine geçerek, bu üçünü bir arada çalışabildikleri sıra dışı bir kuantum biyolojisi deneyi gerçekleştirdiler: Tardigradlar olarak da bilinen su ayılarını, süper iletken bir kuantum bit (yani "kübit" veya "qubit" olarak da bilinen kuantum bilgi birimi) içerisine yerleştirilerek, onları bir devre içerisinde "kuantum dolanıklık" durumuna soktular.

Kuantum dolanıklık, atom altı ölçekteki iki parçacığın kuantum durumlarının birbirine bağımlı olması olgusudur. Eğer deney ortamı kusursuz (veya ona yakın bir şekilde) izole edilebilirse, atom altı seviyenin ötesindeki maddeler de (mesela atomlar ve hatta birkaç atomdan oluşan moleküller) kuantum dolanıklığa sokulabilir. Kuantum dolanıklık halindeki parçacıklardan birinin kuantum durumu ölçüldüğünde, diğerinin kuantum durumu da (aralarındaki mesafe ne olursa olsun), anında belirlenir. Bu durum, klasik fiziğin öngördüğü lokalite olgusunu yerle bir ederek, kuantum fiziğinin Evren'i bambaşka bir boyutta açıklayabilmesini sağlamıştır. 

İşte bu deney, bilim tarihinde ilk defa çok hücreli bir organizmayı temel bir kuantum olgunun konusu haline getirerek, hem fizik hem kimya hem de biyoloji alanında bir devrim yaratmayı başarmaktadır. Ayrıca deney sırasında tardigradlar, çeşitli abiyotik (pH, sıcaklık, basınç vb.) streslere bugüne dek bırakılmadıkları seviyelerde maruz bırakılmış ve ünlerine yakışır bir şekilde deneyden sağ çıkabilmeyi dahi başarmışlardır.


Tardigradlar Kuantum Deneylerinde "Model Organizma" Olabilir mi?

Tardigradlar, boyutları mikrometreler ile ölçülen, bu nedenle çıplak gözle gözlemleyemediğimiz hayvan şubelerinden biridir. Bu şube içerisinde yer alan yaklaşık 1.500 tardigrad türünün her birinin birbirinden farklı dayanıklılık değerleri olsa da şubeye adını veren tardigrad ismi dünyanın en dayanıklı hayvanı unvanını elinde barındırır. 

Bu unvanı 2007 senesinde gerçekleştirilen foton-m3 projesi bünyesinde yer alan TARDIS adlı misyonda daha önce hiçbir hayvanın başaramadığı koruyucu filtresiz çıplak güneş ışığına dayanmalarına atfen verilmiştir. Dayanıklılık özelliğinin keşfinin ardından zaman içerisinde dayanıklılık mekanizmalarının aydınlatılması adına yapılan çalışmaların sayısı da artmıştır. Bu dayanıklılık ile ilgili çalışmalar birçok farklı disiplin ile ortak bir şekilde gerçekleştirilmiş, gelecekteki potansiyel uzay seyahatlerine dair bizlere yol gösterici veriler elde edilmiştir. Tardigradların dayanıklılığını aşağıdaki şekilde özetlemek mümkündür:


Tun (uzuvlarını gövdesine doğru çektiği kapalı formu) formundayken atmosferik koşullarda 9-20 yıl arasında, dondurulmuş durumda 30 yıla kadar hayatta kalabilir.

Sıvı nitrojen ile -253oC dondurulduğunda 21 aya dayanabilmekle beraber, -272oC’de yani mutlak sıfırın sadece 1 derece üstünde bile birkaç gün dayanabildikleri bilinmektedir.

151oC’de yaklaşık 15 dakika boyunca hayatta kalabilmektedir.

Uzay gibi aşırı düşük basınç ortamına 10 gün; 74.019 atm gibi aşırı yüksek basınç ortamlarına günlerce dayanabildikleri bilinmektedir.

X-ray veya ağır iyon (4He) radyasyonunda LD50 (popülasyonun yarısını öldüren değer) değerinde ulaşılan radyasyon seviyesi 5.000 Gy, gama tipli radyasyona gösterilen direnç seviyesi ise 1.000 ila 9.000 Gy arasında değişmektedir.

UV’ye karşı olan direnç 75-88 kJm-2 olarak tespit edilmiştir. Unutmamak gerekir ki sadece 40 Jm-2’de DNA’mızda meydana gelen timin dimeri adını verdiğimiz bozulma ciddi bir seviyede gözlemlenmeye başlanır.

Çoğu canlı için direkt öldürücü olan çeşitli kimyasallara (karbon dioksit, hidrojen sülfit, 1-hekzanol, metilbromid gazı, etanol) birkaç dakikalığına dayanabildiği bilinmektedir.

Tardigradlar Üzerinde Kuantum Dolanıklılık Deneyleri Nasıl Yapıldı?

İşte tüm bu özellikleri, kuantum biyolojisinde yapılacak bir devrim için tardigradları ideal aday yapıyordu. Çünkü kuantum deneylerde aşırı düşük basınç ve sıcaklıklar kullanılmaktadır ve birçok canlı, bu kadar ekstrem durumlara dayanamayacaktır. Tardigradlar içinse bu, parkta sıradan bir yürüyüş yapmak gibidir!

Çalışmanın ekip lideri Rainer Dumke ve meslektaşları, deney için iki süper iletken kübit (klasik hesaplamadaki bir bitin kuantumdaki eşdeğeri) arasına tun durumunda bir tardigrad yerleştirdiler. Bu tardigradlar, Ramazzottius variornatus türü, oldukça dayanıklı hayvanlardı. Tardigrad, süper iletken bir kavşak yardımı ile bir yük kübitine (Qubit B) bağlandı. Qubit B'nin bir kavşak yardımı ile bağlanmasına karşılık, Qubit A sadece Qubit B'ye bir bir kapasitör ile bağlanmıştı. 

İlgili bağlantıların ve konumlandırmaların hepsi gerçekleştirildikten sonra deneyin gerçekleşeceği ortamın olası çevresel etkenler ile müdahalede bulunup deney sonuçlarını etkilememesi için ortamın basıncı, vakum olarak adlandırılacak seviyeye, ortamın sıcaklığı ise mutlak sıfır olarak bilinen -273oC'ye indirildi. Böylece kübitler ve tardigrad üzerindeki etki edebilecek dış etkiler en aza indirilmiş oldu ve akademik literatürde bir tardigradın maruz kaldığı en ekstrem koşullar yaratılmış oldu.

Tardigradların halihazırda mutlak sıfıra çok yakın değerlere dayanabilmesi, onları atomların kuantum belirsizlikten ötürü olan hareketleri haricinde tamamen donmuş oldukları bu ortamda, deneğin canlı olmasından kaynaklı doğabilecek olan endişelerin önüne geçerek, deneye tamamen fizik açısından yaklaşmayı ve müdahale etmeyi mümkün kıldı.

Deney düzeneğinde tardigrad ve kübit arasında dolanıklılık durumunun elde edilip edilmediğini belirlemek için tardigrad-kübit kombinasyonunun ne sıklıkta titreştiği ölçüldü. 


Deneyde Elde Edilen Sonuçlar

Deneyler gerçekleştirildikten sonra, araştırmacılar tardigradı yavaşça tekrar basınçlı ve sıcak bir ortama aldılar ve tun (korunaklı) durumundan çıkararak hayata döndürmeyi başardılar. Bu sayede tardigradlar, kendilerine ait dayanıklılık rekorunu tazeleyerek, mutlak sıfırın 0.01°C üzerinde de hayatta kalmayı başarabildiklerini ispatlamış oldular. Böylece deney, biyoloji alanında da bir başarıya imza atmış oldu.

Deney sonucunda yapılan osilatör ölçümleri, kübit-tardigrad dolanıklığına ait durumların birbirine dik yapıda (ortogonal) olduğunu, dolayısıyla bu sistemin 3 kübit ile temsil edilebileceğini gösterilmiş oldu (Qubit A, Qubit B ve tardigrad). Bir yoğunluk matrisi kullanan uzmanlar, bu 3 parçanın da birbiriyle dolanık olduğunu göstermeyi başardılar. Böylece araştırmacılar, dünyada ilk kez bir çok hücreli organizmayı bir kuantum biti olarak, yani dolanık bir hâlde kullanmış oldular.


Sonuç

Bu kadar devrimsel nitelikte bir çalışmanın akıllarda yepyeni sorular oluşturması kaçınılmazdır. Özellikle tardigradın deney sırasında ametabolik bir duruma geçmesi bekleniyordu (bir anlamda kısa süreliğine canlı olmaması), çünkü herhangi bir aktif biyokimyasal işlem kuantum dolanıklılığına izin vermezdi. Bununla birlikte tardigradların metabolizmasının bu şekilde bir davranış sergilemesi, bazı uzmanlar tarafından daha şimdiden tartışmaları doğurdu. Tardigradlar üzerinde çalışmalar gerçekleştiren bazı araştırmacılar, tardigradların kuantum dolanıklılık deneyi sırasında hala metabolik aktivitesini çok düşük bir düzeyde korunduğunu dile getiriyor. 

Araştırmacıların kafalarını karıştıran bir diğer soru ise, bu tür bir deneyde organizmanın hangi bölümünün dolanıklılığa katıldığıdır. Canlının tümünün devrede yer almasından dolayı böylesine bir deney düzeneğinde bunu bilmek pek kolay değildir. Bu teknik engellere rağmen Dumke ve ekibi, gelecekte diğer yaşam formları ile de bu deneyi gerçekleştirmeyi planlıyorlar. 

İlk etapta meraka dayalı bir araştırma gibi gelen bu ilginç deney, tardigrad gibi büyük ve çok hücreli biyolojik bir sistemin serbestlik derecesi ile, atom altı değerlerin hakim olduğu kuantum durumunun "tutarlı" bir şekilde iletişim kurabildiğini ispatlamıştır. Bu çalışma, ileride biyolojik organizmaların kuantum sistemlere dâhil edilmesini ve kuantum sistemlerin biyolojik organizmalarla etkileşebilecek biçimde inşa edilmesini sağlayabilir. Ama araştırmacılar için her şeyden önemlisi, makalelerinin sonuç paragrafında şöyle anlatılıyor:

Bohr'un canlı organizmalarla kuantum deneyleri yapmanın imkansızlığı konusundaki iddiasını yeniden gözden geçirerek bir sonuca varmak isteriz: Mevcut araştırmamız, biyolojik maddeyi ve kuantum maddeyi günümüz teknolojisiyle mümkün olan belki de en yakın birleştirme işlemini başarmıştır. Tardigrada benzer bileşime sahip cansız bir nesnenin benzer fiziksel sonuçlar vermesi beklenebilirdi; ancak bu deneyimizde, deney sonrasında biyolojik işlevini tamamen koruyan bir organizmanın dolanıklığını gösterdiğimizi vurgulamak isteriz. Tardigrad, maruz kaldığı en aşırı ve uzun süreli koşullardan sağ çıktı ve kriptobiyozun gerçekten ametabolik olduğunu gösterdi. Bunun, hayvanın durumlarının makroskopik olarak giderek daha ayırt edilebilir olduğu deneyleri teşvik edeceğini umuyoruz. Çalışmamız, canlı madde ve kuantum bitlerinden oluşan hibrit sistemlerin yaratılacağı yepyeni ve heyecan verici bir yönde atılan ilk adımdır. 

 

Haber: evrimagaci.org 



Bu haber 1,379 defa okundu.


Yorumlar

 + Yorum Ekle 
    kapat

    Değerli okuyucumuz,
    Yazdığınız yorumlar editör denetiminden sonra onaylanır ve sitede yayınlanır.
    Yorum yazarken aşağıda maddeler halinde belirtilmiş hususları okumuş, anlamış, kabul etmiş sayılırsınız.
    · Türkiye Cumhuriyeti kanunlarında açıkça suç olarak belirtilmiş konular için suçu ya da suçluyu övücü ifadeler kullanılamayağını,
    · Kişi ya da kurumlar için eleştiri sınırları ötesinde küçük düşürücü ifadeler kullanılamayacağını,
    · Kişi ya da kurumlara karşı tehdit, saldırı ya da tahkir içerikli ifadeler kullanılamayacağını,
    · Kişi veya kurumların telif haklarına konu olan fikir ve/veya sanat eserlerine ait hiçbir içerik yayınlanamayacağını,
    · Kişi veya kurumların ticari sırlarının ifşaı edilemeyeceğini,
    · Genel ahlaka aykırı söz, ifade ya da yakıştırmaların yapılamayacağını,
    · Yasal bir takip durumda, yorum tarih ve saati ile yorumu yazdığım cihaza ait IP numarasının adli makamlara iletileceğini,
    · Yorumumdan kaynaklanan her türlü hukuki sorumluluğun tarafıma ait olduğunu,
    Bu formu gönderdiğimde kabul ediyorum.




    En Çok Okunan Haberler


    ON ALTI YILDIZ'da Ara Internet'te Ara  

    Haber Sistemi altyapısı ile çalışmaktadır.
    8,044 µs